
Order at Last
The New U-Boot Driver Model

Architecture

Simon Glass, Google Inc, ELCE 2015, Dublin

1

Agenda
● Before driver model
● Design goals
● Architecture
● Benefits and limitations
● Test methodology
● Comparisons with Linux
● Performance
● A few examples
● Status update

2

More and more drivers

3

Before driver model
● U-Boot has 10 useful design principles (e.g. small, fast, simple, portable)

○ Huge community, over 1000 boards supported by the end of 2011
○ But Ad-hoc driver model started to bite

● Drivers were invoked through direct C calls
○ i2c_read() is implemented by whichever driver is compiled in
○ CONFIG option select which I2C driver to use, clock speed, bus number, etc.

● Hard to scale
○ Multiple I2C drivers must be munged into a single driver
○ Or an ad-hoc framework created to handle this requirements

● Configuration becoming unwieldy
○ 6000 CONFIG options at its peak
○ Kconfig conversion helps, but that's still a lot of options

4

Driver model design goals
● Simple
● Lazy initialisation
● Small memory overhead
● Small execution overhead
● Support 'required' features

○ Device numbering, etc.

● History
○ Conceived in 2010 by Marek Vasut
○ University project in 2012 led by Marek with 3 collaborators
○ RFC in April 2013
○ v9 series merged in 2014.04

5

Architecture
● Uclass

○ A way of grouping devices which operate the same way

● Driver
○ Code to talk to a peripheral type (e.g. Ethernet switch, I2C controller, LCD)

● Device
○ Instance of a driver
○ Created from some platform-specific information bound to a driver

● Device tree and hierarchy
● Memory allocation
● Sequence numbers

6

Device hierarchy

7

Device tree configuration

8

Device sequence

9

Automatic memory allocation

10

Architecture 2
● Binding and probing

○ Binding creates the device but does not touch hardware
○ Probing activates the device ready for use

● Avoid private data structures
○ Everything out in the open

● SPL support
○ fdtgrep
○ Simple malloc()
○ Drop device removal code, warnings, etc.

11

Start-up sequence
● dm_init_and_scan():
● dm_init()

○ Creates an empty list of devices and uclasses
○ Binds and probes a root device

● dm_scan_platdata()
○ Scans available platform data looking for devices to be created
○ Platform data may only be used when memory constraints prohibit device tree

● dm_scan_fdt()
○ Scan device tree and bind drivers to nodes to create devices

12

Some useful features
● Bind only a subset of devices before relocation
● Debug UART for early debugging
● A few commands

=> dm tree
 Class Probed Name
--
 root [+] root_driver
 serial [+] |-- serial
 rtc [] |-- rtc
 gpio [] |-- gpioa
 gpio [] |-- gpiob
 gpio [] |-- gpioc
 gpio [] |-- gpiod
 gpio [] |-- gpioe
 gpio [] |-- gpiof
 pci [+] |-- pci
 pci_generic [] | |-- pci_0:0.0
 pci_generic [] | |-- pci_0:2.0
 pci_generic [] | |-- pci_0:11.0

13

Test methodology
● Automated tests cover core features and all uclasses

○ Current test suites is about 85 tests
○ Runs in a few seconds

● Tests use sandbox
○ Do not need to run on real hardware
○ Emulation drivers are provided for each uclass

● Mostly unit tests
○ A few functional tests (e.g USB flash stick)

● "What is not automatically tested does not work"

14

Driver model benefits
● Consistent view of devices regardless of their type
● Multiple drivers can be used with the same subsystem

○ Drivers can be created which use others drivers for their transport layer

● The lifecycle of a device is clear and consistent
● Devices can be bound automatically

○ Then probed automatically when used

● Supports device tree for configuration
○ Thus sharing this with Linux and potentially other projects
○ Avoids recreating the same information again in a different format

15

Limitations
● A driver can be in only one uclass

○ Multi-function devices must use separate child devices

● Uses flattened device tree
○ Driver model uses the device tree offset
○ Overlays and other mutations are not supported

16

Code size
● Individual control over feature set

○ Pinctrl, simple-bus, device removal, warnings
○ E.g. MMC uclass is linked in only if CONFIG_DM_MMC is enabled

● Device tree code is optional (CONFIG_[SPL_]OF_CONTROL)

● Totals for drivers/core/

Architecture Code size * Data size

ARM 9051 280

PowerPC 10379 336

Thumb 2 5745 280

x86 (32-bit) 11970 280

17* includes command-line code in dump.o

Code size example *

18

Features Code size Minimal
total size

Incremental
Overhead

Total
Overhead

Driver model, device tree, serial,
printf()

8816 9501 3319 8125

Driver model, device tree, serial 6182 7069 2814 4806

Driver model, serial 3368 3648 1992 1992

Serial (without driver model) 1376 1376 - -

* Firefly based on Rockchip RK3288, using gcc 4.9 with rodata bug fixed: https:
//gcc.gnu.org/bugzilla/show_bug.cgi?id=54303

Data size
● Core structure sizes are moderate
● Device tree can be cut down with fdtgrep

○ E.g. Rockchip RK3288: 33KB -> 3757 bytes

19

U-Boot structure Size (32-bit) Size (64-bit)

struct udevice 84 176

struct uclass 24 48

struct driver 68 120

CPU overhead
● Must run efficiently at slow clock speed

○ Various features help with this

● Small amount of core code!
● Simple malloc()
● Only bind devices that are needed

○ Mark those needed in SPL and before relocation
○ Device tree property / driver flag

● Only probe devices when needed
● Cut-down device tree (fdtgrep)

20

CPU overhead examples

21

Board CPU details SPL Time
(ᵤs)

Pre-relocation
time (ᵤs)

Post-relocation
time (ᵤs)

Beaglebone Black 800MHz TI OMAP4 (Cortex-A8) - <1,000, 8,000 <1,000 / <1,000

Firefly RK3288 1.8GHz Rockchip RK3288 (Cortex-
A17)

90 / 1,098 75 / 3,474 54 / 1,932

Link (Pixel 2013) 1.8GHz Intel Core i5 - 1,052 / 339 5 / 34

Minnowmax 1.33GHz Intel Atom E3825 - 3,443 / 2,027 7 / 30

Nyan (Chromebook) 2.3GHz Tegra K1 (Cortex-A15) 527 / 517 14 / 65 516 / 508

Snapper 9260 180MHz Atmel AT91SAM9260
(ARM926Ej-S)

- 53 / 148 111 / 258

Snow (Chromebook) 1.7GHz Samsung Exynos 5250
(Cortex-A15)

- 32 / 2,485 5 / 172

Time to execute dm_init_and_scan() / time to start serial driver

Comparing to Linux
● Classes
● Buses
● Binding and probing
● Memory allocation
● Relocation and SPL
● Device visibility
● Locking

22

Comparing to Linux: data structure size

23

Structure U-Boot
structure

Linux size U-Boot
size

Relative

struct device struct udevice 480 84 18%

struct class struct uclass 284 24 8%

struct
device_driver

struct driver 144 68 47%

Comparing to Linux: automatic memory allocation
● Linux code

24

struct cros_ec_keyb *ckdev;

ckdev = devm_kzalloc(&pdev->dev, sizeof(*ckdev), GFP_KERNEL);

if (!ckdev)
return -ENOMEM;

err = matrix_keypad_parse_of_params(&pdev->dev, &ckdev->rows,
 &ckdev->cols);

if (err)
return err;

ckdev->valid_keys = devm_kzalloc(&pdev->dev, ckdev->cols, GFP_KERNEL);
if (!ckdev->valid_keys)

return -ENOMEM;

ckdev->old_kb_state = devm_kzalloc(&pdev->dev, ckdev->cols, GFP_KERNEL);
if (!ckdev->old_kb_state)

return -ENOMEM;

idev = devm_input_allocate_device(&pdev->dev);
if (!idev)

return -ENOMEM;

uclass handles this

driver model handles these

Using driver model with your board
● Examples

○ Exynos boards (e.g. snow)
○ Allwinner (sunxi) board (e.g. A20-OLinuXino_MICRO)
○ Any tegra board (e.g. jetson_tk1)
○ Any x86 board (e.g. qemu-x86)
○ glacier_ramboot (PowerPC)
○ firefly-rk3288

25

Example 1: Requesting GPIOs

26

board_config.h:
#define CONFIG_EC_INTERRUPT 97 /* GPX11, active low! */

code:
#ifdef CONFIG_EC_INTERRUPT

ret = gpio_request(CONFIG_EC_INTERRUPT, "cros-ec");
if (ret)

return ret;
ret = gpio_direction_in(CONFIG_EC_INTERRUPT);
if (ret)

return ret;
val = !gpio_get_value(CONFIG_EC_INTERRUPT)

#endif
device tree fragment:

cros-ec {
ec-interrupt-gpios = <&gpx1 6 GPIO_ACTIVE_LOW>;

};

code (within cros_ec device probe() method):
struct gpio_desc ec_int;

gpio_request_by_name(dev, "ec-interrupt-gpios", 0, &ec_int,
GPIOD_IS_IN);

if (dm_gpio_is_valid(&ec_int))
val = gpio_get_value(&ec_int);

Example 2: Enabling power

27

device tree fragments:
ldo6_reg: LDO6 {

regulator-name = "vdd_mydp";
regulator-min-microvolt = <1200000>;
regulator-max-microvolt = <1200000>;
regulator-always-on;
op_mode = <3>;

};
ps8622-bridge@8 {

power-supply = <&ldo6_reg>;
};

code (in ps8622 driver attach() method):

ret = uclass_get_device_by_phandle(UCLASS_REGULATOR, dev,
 "power-supply", ®);

if (!ret)
ret = regulator_autoset(reg);

Porting a driver to driver model
● Good opportunity to clean up the code
● Global/static variables move into a struct - dev_get_priv()
● API changes

○ At minimum, adds a struct udevice *
○ But a minor rethink is desirable

● Often need to continue to support non-driver-model boards
● Convert to use Kconfig
● Overall fairly invasive
● See example patches in the notes

28

● Work started in 2014.04
● 32 uclasses supported so far
● Major remaining work:

○ block devices
○ environment
○ display (LCD and video)
○ filesystems
○ stdio
○ usb gadget

Status update

29

When will we be done?

30

650 drivers remaining to convert

400 contributors to U-Boot in the last 12 months
≅ 2 years

830 boards remaining to convert *

400 contributors to U-Boot in the last 12 months
≅ 2 years

* With 2015.10, 234 out of 1064 boards enable CONFIG_DM. So far there are 708 commits tagged with 'dm:'

Timeline

31

Driver model
2014.04 2014.10 2015.01 2015.04 2015.07 2015.10 2016.01 2016.04 2016.07 2016.10
Core
GPIO

Serial, SPI,
Cros-EC,
SPI flash

I2C, Thermal RSA, LPC,
PCH

USB Host,
Mass
storage,
Ethernet,
CPU, PCI,
PMIC,
Regulator,
RTC, Display
port, Video
bridge

LED, TPM,
MMC,
Syscon,
RAM, Reset,
Pinctrl, Clock

Keyboard,
...

Start
deprecation

All major
uclasses
complete

Start removal

Conclusion
● Driver model is ready for prime time
● Substantial improvement in organisation and use of drivers
● Active and ongoing effort to convert the code base

○ Majority of subsystems are supported in U-Boot 2015.10
○ Much work remains to convert all drivers and boards

● Overhead is moderate, even in SPL
● Can support SoCs and boards of arbitrary complexity

32

● Full ELCE paper at https://goo.gl/F75qIQ
● See the README:

○ http://git.denx.de/?p=u-boot.git;a=blob;f=doc/driver-model/README.txt

● Contact details:
○ Simon Glass <sjg@chromium.org>
○ Cc: U-Boot Mailing List <u-boot@lists.denx.de>
○ IRC sjg1
○ https://plus.google.com/+SimonGlass

Questions

33
v3

https://goo.gl/F75qIQ
mailto:sjg@chromium.org
mailto:u-boot@lists.denx.de
https://plus.google.com/+SimonGlass
https://plus.google.com/+SimonGlass

